Topological Mixing and Hypercyclicity Criterion for Sequences of Operators

نویسندگان

  • JENG-CHUNG CHEN
  • SEN-YEN SHAW
چکیده

For a sequence {Tn} of continuous linear operators on a separable Fréchet space X, we discuss necessary conditions and sufficient conditions for {Tn} to be topologically mixing, and the relations between topological mixing and the Hypercyclicity Criterion. Among them are: 1) topological mixing is equivalent to being hereditarily densely hypercyclic; 2) the Hypercyclicity Criterion with respect to the full sequence N implies topological mixing; 3) topological mixing implies the Hypercyclicity Criterion with respect to some sequence {nk} ⊂ N that cannot be syndetic in general, and also implies condition (b) of the Hypercyclicity Criterion with respect to the full sequence. Applications to two examples of operators on the Fréchet space H(C) of entire functions are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical System and Semi-Hereditarily Hypercyclic Property

In this paper we give conditions for a tuple of commutative bounded linear operators which holds in the property of the Hypercyclicity Criterion. We characterize topological transitivity and semi-hereiditarily of a dynamical system given  by an n-tuple of operators acting on a separable infinite dimensional Banach space .

متن کامل

Subspace-diskcyclic sequences of linear operators

A sequence ${T_n}_{n=1}^{infty}$ of bounded linear  operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...

متن کامل

(non-)weakly Mixing Operators and Hypercyclicity Sets

We study the frequency of hypercyclicity of hypercyclic, non–weakly mixing linear operators. In particular, we show that on the space `(N), any sublinear frequency can be realized by a non–weakly mixing operator. A weaker but similar result is obtained for c0(N) or `(N), 1 < p <∞. Part of our results is related to some Sidon-type lacunarity properties for sequences of natural numbers.

متن کامل

ON THE SALAS THEOREM AND HYPERCYCLICITY OF f(T )

We study hypercyclicity properties of functions of Banach space operators. Generalizations of the results of Herzog-Schmoeger and Bermudez-Miller are obtained. As a corollary we also show that each non-trivial operator commuting with a generalized backward shift is supercyclic. This gives a positive answer to a conjecture of Godefroy and Shapiro. Furthermore, we show that the norm-closures of t...

متن کامل

About Subspace-Frequently Hypercyclic Operators

In this paper, we introduce subspace-frequently hypercyclic operators. We show that these operators are subspace-hypercyclic and there are subspace-hypercyclic  operators that are not subspace-frequently hypercyclic. There is a criterion like to subspace-hypercyclicity criterion that implies subspace-frequent hypercyclicity and if an operator $T$ satisfies this criterion, then $Toplus T$ is sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006